102 research outputs found

    Emergence of Compositional Representations in Restricted Boltzmann Machines

    Full text link
    Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits dataset MNIST.Comment: Supplementary material available at the authors' webpag

    Estimating the principal components of correlation matrices from all their empirical eigenvectors

    Full text link
    We consider the problem of estimating the principal components of a population correlation matrix from a limited number of measurement data. Using a combination of random matrix and information-theoretic tools, we show that all the eigenmodes of the sample correlation matrices are informative, and not only the top ones. We show how this information can be exploited when prior information about the principal component, such as whether it is localized or not, is available by mapping the estimation problem onto the search for the ground state of a spin-glass-like effective Hamiltonian encoding the prior. Results are illustrated numerically on the spiked covariance model.Comment: 6 pages, 6 figures, to appear in Europhysics Letter

    Criticality and Universality in the Unit-Propagation Search Rule

    Full text link
    The probability Psuccess(alpha, N) that stochastic greedy algorithms successfully solve the random SATisfiability problem is studied as a function of the ratio alpha of constraints per variable and the number N of variables. These algorithms assign variables according to the unit-propagation (UP) rule in presence of constraints involving a unique variable (1-clauses), to some heuristic (H) prescription otherwise. In the infinite N limit, Psuccess vanishes at some critical ratio alpha\_H which depends on the heuristic H. We show that the critical behaviour is determined by the UP rule only. In the case where only constraints with 2 and 3 variables are present, we give the phase diagram and identify two universality classes: the power law class, where Psuccess[alpha\_H (1+epsilon N^{-1/3}), N] ~ A(epsilon)/N^gamma; the stretched exponential class, where Psuccess[alpha\_H (1+epsilon N^{-1/3}), N] ~ exp[-N^{1/6} Phi(epsilon)]. Which class is selected depends on the characteristic parameters of input data. The critical exponent gamma is universal and calculated; the scaling functions A and Phi weakly depend on the heuristic H and are obtained from the solutions of reaction-diffusion equations for 1-clauses. Computation of some non-universal corrections allows us to match numerical results with good precision. The critical behaviour for constraints with >3 variables is given. Our results are interpreted in terms of dynamical graph percolation and we argue that they should apply to more general situations where UP is used.Comment: 30 pages, 13 figure

    On the trajectories and performance of Infotaxis, an information-based greedy search algorithm

    Full text link
    We present a continuous-space version of Infotaxis, a search algorithm where a searcher greedily moves to maximize the gain in information about the position of the target to be found. Using a combination of analytical and numerical tools we study the nature of the trajectories in two and three dimensions. The probability that the search is successful and the running time of the search are estimated. A possible extension to non-greedy search is suggested.Comment: 6 pages, 7 figures, accepted for publication in EP

    Information content in continuous attractor neural networks is preserved in the presence of moderate disordered background connectivity

    Full text link
    Continuous attractor neural networks (CANN) form an appealing conceptual model for the storage of information in the brain. However a drawback of CANN is that they require finely tuned interactions. We here study the effect of quenched noise in the interactions on the coding of positional information within CANN. Using the replica method we compute the Fisher information for a network with position-dependent input and recurrent connections composed of a short-range (in space) and a disordered component. We find that the loss in positional information is small for not too large disorder strength, indicating that CANN have a regime in which the advantageous effects of local connectivity on information storage outweigh the detrimental ones. Furthermore, a substantial part of this information can be extracted with a simple linear readout.Comment: 20 pages, 6 figure
    corecore